Efficient Identification of Objects Carrying Elements of High-Order Symmetry By Using Correlated Orbital Angular Momentum \(OAM\) States

نویسندگان

  • Alexander V. Sergienko
  • Néstor Uribe-Patarroyo
  • Andrew Fraine
  • David S. Simon
  • Olga Minaeva
چکیده

A major contributions of Wigner’s work was the introduction of group theory to study both the dynamics and the classification of states in quantum mechanics. The use of rotational symmetry to study the properties of angular momentum eigenstates is particularly associated with him. Following along a similar path, it is shown here that advances in the study of entangled and correlated two-photon states allow the rapid detection of rotational symmetries in complex macroscopic objects, and that knowledge of this symmetry structure can allow identification, and in some circumstances reconstruction, of the object. The potential for efficient identification of objects carrying elements of high-order symmetry using correlated orbital angular momentum (OAM) states is demonstrated. The enhanced information capacity of this approach allows the recognition of specific spatial symmetry signatures present in objects with the use of fewer resources than in a conventional pixel-by-pixel imaging, representing the first demonstration of compressive sensing using OAM states. This approach demonstrates the capability to quickly evaluate multiple Fourier coefficients directly linked with the symmetry features of the object. The results suggest further application in small-scale biological contexts where symmetry and small numbers of noninvasive measurements are important.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Generation of Higher Order Orbital Angular Momentum Modes and Parameters Affecting the Vortex

In this manuscript, higher-order Orbital Angular Momentum (OAM) modes and parameters affecting vortex in the radiation pattern have been studied. A uniform circular array resonating at 10 GHz frequency is formed using eight identical rectangular patch antennas. Three uniform circular arrays are analyzed, simulated, and fabricated for OAM modes 0, +1, and -1 respectively. The higher-order OAM mo...

متن کامل

High-capacity imaging and rotationally insensitive object identification with correlated orbital angular momentum states

Using no conventional measurements in position space, information extraction rates exceeding one bit per photon are achieved by employing high-dimensional correlated orbital angular momentum (OAM) states for object recognition. The correlations are shown to be insensitive to axial rotation of the target object: The information structure of an object's joint OAM coincidence spectrum is unchanged...

متن کامل

Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and t...

متن کامل

Efficient sorting of orbital angular momentum states of light.

We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical elements perform a Cartesian to log-polar coordinate transformation, converting the helically phased light beam corresponding to OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses each input OAM state to a different lateral po...

متن کامل

Coherent detection of orbital angular momentum in radio

Coherent detection of orbital angular momentum in radio Report Title The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We demonstrate experimentally that radio beams propagating OAM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014